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[. CONTRIBUTION

Exact method, based on an arc-flow formulation,
for solving bin packing and cutting stock prob-
lems including multi-constraint variants.

[I. BIN PACKING /CUTTING STOCK

Objective: Pack a set of items into as few bins as possible
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I1I. p-DIMENSIONAL VECTOR PACKING

» Bin packing with multiple constraints
» Pack n items of m different types, represented by p-
dimensional vectors, into as few bins as possible.

IV. ASSIGNMENT-BASED MODEL

min

S.T. inj 2 bi,

k k
Zwi Tij < y; W,

1=1
Yj < {07 1}7

x;; > 0, integer, 1 =1..m, 7 = 1l..n,
where w; and b; are the weight vector and demand of
items of type 7, and W is the capacity vector. The vari-
ables are y;, which 1s 1 if bin j is used and 0 otherwise,
and x;;, the number of times item 7 is assigned to bin j.

1 = 1..m,

7=1.n, k=1..p,

7 =1..n,

B Highly symmetric
B Very weak linear relaxation
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V. GILMORE-GOMORY’S MODEL

Let column vectors a? = (a?,...,al )" represent all pos-
sible cutting patterns j. The element a] represents the
number of items of type ¢ in pattern j. Let x; be a deci-

sion variable for the number of times pattern j is used.

min ij
jed

S.t. Za x; > by, 1= 1..m,
1€J
z; > 0, integer, V) e J,

where J is the set of valid cutting patterns that satisty:

Zagwf < W& k=1.p, ag c Np.
i=1

B Very flexible

B Strong linear relaxation

B Exponential number of variables

VI. VALERIO DE CARVALHO’S MODEL

Consider decision variables x;; corresponding to the
number of items of size 3 — 7 placed in any bin at

a distance of ¢ units from the beginning of the bin.
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One-dimensional packing problems can be solved as a
minimum flow between vertex 0 and vertex W with
demand constraints.

B Strong linear relaxation

B Only models one-dimensional problems

B Large number of variables and constraints

VI1I. VECTOR PACKING GRAPH

» For modeling p-dimensional problems, we use graphs
with p-dimensional node labels.

» LEvery valid packing pattern is represented as a path
from the source S to the target T.

» We only need to consider paths that respect a fixed
order (permutations of items are redundant).
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The dashed arcs are loss arcs that represent unoccupied
portions of the patterns.

8 [1] More information: http://www.dcc.fc.up.pt/ fdabrandao/research/vpsolver/

: ~+th [2] Brandao, F. and Pedroso, J. P. (2013). Bin Packing and Related Problems: General Arc-flow Formulation with
3 Graph Compression. Technical Report DCC-2013-08, Faculdade de Ciéncias da Universidade do Porto, Portugal.

VIII. GRAPH COMPRESSION

Consider an instance with bins of capacity W = (9, 3)
and items of sizes (4,1), (3,1), (2,1) with demands 1, 3,
1, respectively.
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1) Break symmetry: we divide the graph into levels, one
level for each different item.

Graph Wlth levels / Step-2 graph>l<
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2) Main compression phase: we use the longest paths to
the target in each dimension to relabel the nodes.
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3) Final compression phase: we use the longest paths
from the source in each dimension to relabel the nodes.

Step 4 graph*
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x - the target T and the loss arcs connecting every inter-
nal node to it were omitted for simplicity.

o Graph size reductlon (Vertlces)
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- Graph size reduction (arcs)
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IX. GENERAL ARC-FLOW MODEL

Our arc-flow model only requires a directed
acyclic multigraph G = (V,A) containing every
valid packing pattern represented as a path from
the source to the target in order to solve the cor-
responding cutting/packing problem.

min 2 _ifk=s
Z fuvi_z ffum': Zifk:Ta

(u,v,2)€EA:v=Ek (v,r,i)€eA:v=Ek 0for keV \ {S, T},

Z fuvi 2 ij

(w,v,1)EAi=]

fuvi > 0, integer, V(u,v,1) € A,
where (u, v, 1) denotes an arc between u and v associated
with items of type i, and arcs (u,v,7 = 0) are loss arcs;

and f,.; is the amount of flow along the arc (u,v,1).

B Very flexible
B Strong linear relaxation
B Reasonably small models (graph compression!)

7 =1..m,

X. RESULTS

Using the proposed method, we solved 23,153

benchmark instances on a desktop computer,

spending 33 seconds per instance, on average.
Run time analysis (Gurobi)
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These benchmark instances belong to several

strongly NP-hard problems such as vector pack-
ing (VBP), bin packing (BPP), cutting stock (CSP),
CSP with binary patterns (01CSP), BPP with conflicts
(BPPC), and 01CSP with forbidden pairs (01CSPC).

VBP :zmzinzinziunzine 26% 76% :5
BPP :ssisssssssisnianias 3807 93% é E
CSP summinsams 24% 100% ¢ i
01CSP [sssssimsnasnns A0 98% < §0
BPPC # 3% 807 <
01CSPC 0% 727% :

Percentage of instances solved under a 60-second time limit

» We solved benchmark instances with up to millions of
items of 1,000 different types and 1,000 dimensions.

» Despite its simplicity and generality, the pro-
posed method outperforms complex problem-
specific approaches such as branch-and-price
algorithms.



