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I. Contribution
Exact method, based on an arc-flow formulation,
for solving bin packing and cutting stock prob-
lems including multi-constraint variants.

II. Bin Packing/Cutting Stock
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Objective: Pack a set of items into as few bins as possible

Items SolutionBins

III. p-dimensional Vector packing
I Bin packing with multiple constraints
I Pack n items of m different types, represented by p-

dimensional vectors, into as few bins as possible.

IV. Assignment-based model

min
n∑

j=1

yj

s.t.
n∑

j=1

xij ≥ bi, i = 1..m,

m∑
i=1

wk
i xij ≤ yjW

k, j = 1..n, k = 1..p,

yj ∈ {0, 1}, j = 1..n,

xij ≥ 0, integer, i = 1..m, j = 1..n,
where wi and bi are the weight vector and demand of
items of type i, and W is the capacity vector. The vari-
ables are yj , which is 1 if bin j is used and 0 otherwise,
and xij , the number of times item i is assigned to bin j.

� Highly symmetric
� Very weak linear relaxation

V. Gilmore-Gomory’s model

Let column vectors aj = (aj1, . . . , a
j
m)> represent all pos-

sible cutting patterns j. The element aji represents the
number of items of type i in pattern j. Let xj be a deci-
sion variable for the number of times pattern j is used.

min
∑
j∈J

xj

s.t.
∑
j∈J

ajixj ≥ bi, i = 1..m,

xj ≥ 0, integer, ∀j ∈ J,
where J is the set of valid cutting patterns that satisfy:

m∑
i=1

ajiw
k
i ≤W k, k = 1..p, aji ∈ N0.

� Very flexible
� Strong linear relaxation
� Exponential number of variables

VI. Valério de Carvalho’s model
Consider decision variables xij corresponding to the
number of items of size j − i placed in any bin at
a distance of i units from the beginning of the bin.
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One-dimensional packing problems can be solved as a
minimum flow between vertex 0 and vertex W with
demand constraints.
� Strong linear relaxation
� Only models one-dimensional problems
� Large number of variables and constraints

VII. Vector Packing Graph
I For modeling p-dimensional problems, we use graphs

with p-dimensional node labels.
I Every valid packing pattern is represented as a path

from the source s to the target t.
I We only need to consider paths that respect a fixed

order (permutations of items are redundant).
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The dashed arcs are loss arcs that represent unoccupied
portions of the patterns.

VIII. Graph compression
Consider an instance with bins of capacity W = (9, 3)
and items of sizes (4,1), (3,1), (2,1) with demands 1, 3,
1, respectively.
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1) Break symmetry: we divide the graph into levels, one
level for each different item.

Graph with levels/Step-2 graph*
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2) Main compression phase: we use the longest paths to
the target in each dimension to relabel the nodes.

Step-3 graph*
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3) Final compression phase: we use the longest paths
from the source in each dimension to relabel the nodes.

Step-4 graph*

s 3, 1 4, 1 6, 2 7, 2 9, 3
i = 2

i = 2 i = 2i = 2i = 1

i = 3

i = 3

∗ - the target t and the loss arcs connecting every inter-
nal node to it were omitted for simplicity.

Graph size reduction (vertices)
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Graph size reduction (arcs)
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IX. General Arc-flow model
Our arc-flow model only requires a directed
acyclic multigraph G = (V,A) containing every
valid packing pattern represented as a path from
the source to the target in order to solve the cor-
responding cutting/packing problem.
min z

s.t.
∑
(u,v,i)∈A:v=k

fuvi −
∑
(v,r,i)∈A:v=k

fvri =

−z if k = s,
z if k = t,
0 for k ∈ V \ {s,t},∑

(u,v,i)∈A:i=j

fuvi ≥ bj , j = 1..m,

fuvi ≥ 0, integer, ∀(u, v, i) ∈ A,
where (u, v, i) denotes an arc between u and v associated
with items of type i, and arcs (u, v, i = 0) are loss arcs;
and fuvi is the amount of flow along the arc (u, v, i).

� Very flexible
� Strong linear relaxation
� Reasonably small models (graph compression!)

X. Results
Using the proposed method, we solved 23,153
benchmark instances on a desktop computer,
spending 33 seconds per instance, on average.

Run time analysis (Gurobi)
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These benchmark instances belong to several
strongly NP-hard problems such as vector pack-
ing (VBP), bin packing (BPP), cutting stock (CSP),
CSP with binary patterns (01CSP), BPP with conflicts
(BPPC), and 01CSP with forbidden pairs (01CSPC).

Percentage of instances solved under a 60-second time limit
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I We solved benchmark instances with up to millions of
items of 1,000 different types and 1,000 dimensions.

I Despite its simplicity and generality, the pro-
posed method outperforms complex problem-
specific approaches such as branch-and-price
algorithms.
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