
VPSolver 3: Multiple-choice Vector Packing Solver

Filipe Brandão
INESC TEC and Faculdade de Ciências, Universidade do Porto, Portugal

fdabrandao@dcc.fc.up.pt

February 17, 2016

Abstract

VPSolver is a vector packing solver based on an arc-flow formulation with graph compression. In
this paper, we present the algorithm introduced in VPSolver 3.0.0 for building compressed arc-flow
models for the multiple-choice vector packing problem.
Keywords: Multiple-choice Vector Bin Packing, Arc-flow Formulation, Integer Programming.

1 Introduction

The vector bin packing problem (VBP), also called general assignment problem by some authors, is a
generalization of bin packing with multiple constraints. In this problem, we are required to pack n items
of m different types, represented by p-dimensional vectors, into as few bins as possible. The multiple-
choice vector bin packing problem (MVP) is a variant of VBP in which bins have several types (i.e., sizes
and costs) and items have several incarnations (i.e., will take one of several possible sizes).

Brandão and Pedroso (2016) present a general arc-flow formulation with graph compression for vector
packing. This formulation is equivalent to the model of Gilmore and Gomory (1961), thus providing
a very strong linear relaxation; the largest absolute gap found in all the instances solved in Brandão
and Pedroso (2016) was 1.0027. Given a directed acyclic multi-graph containing every valid packing
pattern represented as a path from a source node to a target node, the general arc-flow formulation is
equivalent to the Gilmore-Gomory’s model with the same set of patterns as those represented as paths
in the graph.

In Brandão and Pedroso (2016), a large variety of applications through reductions to vector packing
is presented. Brandão and Pedroso (2013) extends this method to multiple-choice vector bin packing
problems by building a compressed arc-flow graph for each bin type. In this method, a super source
node is connected to the source node of each arc-flow graph and each target node is connected to a super
target. Since every feasible packing pattern using any of the available bin types is represented as a path
from the super source to the super target, the general arc-flow formulation can be applied.

In this paper, we present an alternative algorithm for building compressed arc-flow graphs for multiple-
choice vector packing problems. This algorithm is a generalization of the direct Step-3 graph construction
algorithm proposed in Brandão and Pedroso (2016). If there is only one bin type and each item has
a single incarnation, the new algorithm produces exactly the same graph as the one produced by the
original algorithm. When multiple bin types exist, the algorithm produces on a single run a graph
containing all the valid packing patterns for all bin types. This new algorithm is usually much faster
than the method proposed in Brandão and Pedroso (2013), and it usually produces smaller graphs.

The remainder of this paper is organized as follows. Section 2 presents the arc-flow formulation for MVP.
In Section 3, we show how to derive arc-flow models from dynamic programming recursions, and how to
obtain smaller models using graph compression. Finally, Section 4 introduces the new graph construction
and compression algorithm, and Section 5 presents some conclusions.

1

ar
X

iv
:1

60
2.

04
87

6v
1

 [
m

at
h.

O
C

]
 1

6
Fe

b
20

16

2 General arc-flow formulation for MVP

For a given i, let Ji be the set of incarnations of item i, and let I = {(i, j) : i = 1, . . . ,m, j ∈ Ji} be
the set of items. Let (i, j) ∈ I be the incarnation j of item i, and wij its weight vector. For the sake of
simplicity, we define (0, 0) as an item with weight zero in every dimension; this artificial item is used to
label loss arcs. Let bi be the demand of items of type i, for i = 1, . . . ,m. Let b0 be the total number of
items (i.e., b0 =

∑m
i=1 bi). Let q be the number of bin types, and let Wt and Ct be the capacity vector

and the cost of bins of type t, respectively.

Given a directed acyclic multi-graph G = (V,A) containing every valid packing pattern for each bin
of type t represented as a path from the source s to the target tt, and adding loss arcs connecting
each target to the source, the following arc-flow formulation can be used to model the corresponding
multiple-choice vector packing problem:

minimize

q∑
t=1

Ctf
0,0
tts (1)

subject to
∑

(u,v,i,j)∈A:v=k

f ijuv −
∑

(u,v,i,j)∈A:u=k

f ijuv = 0 for k ∈ V, (2)

∑
(u,v,i,j)∈A:i=k

f ijuv ≥ bk, k ∈ {1, . . . ,m} \ S, (3)

∑
(u,v,i,j)∈A:i=k

f ijuv = bk, k ∈ S, (4)

f ijuv ≤ bi, ∀(u, v, i, j) ∈ A, (5)

f ijuv ≥ 0, integer, ∀(u, v, i, j) ∈ A, (6)

where each arc has four components (u, v, i, j) corresponding to an arc between nodes u and v associ-
ated to the incarnation j of item i; arcs (u, v, 0, 0) are loss arcs; f ijuv is the amount of flow along the
arc (u, v, i, j); m is the number of different items; q is the number of bin types; bi is the demand of items
of type i; and S ⊆ {1, . . . ,m} is a subset of items whose demands are required to be satisfied exactly
for efficiency purposes. For having tighter constraints, one may set S = {i = 1, . . . ,m : bi = 1} (we have
done this in our experiments). The only difference in relation to the original arc-flow formulation for
VBP is the fact that there is one target node for each bin type instead of just one; on VBP instances
this model is exactly the same as the one proposed in Brandão and Pedroso (2016).

In model (1)-(6), the two types of demand constraints and the upper bounds on variable values are
mostly useful to take advantage of binary variables and multiple-choice constraints. A simplified version
of this general arc-flow formulation that can also be used is the following:

minimize

q∑
t=1

Ctf
0,0
tts (7)

subject to
∑

(u,v,i,j)∈A:v=k

f ijuv −
∑

(u,v,i,j)∈A:u=k

f ijuv = 0, for k ∈ V, (8)

∑
(u,v,i,j)∈A:i=k

f ijuv ≥ bk, k = 1, . . . ,m, (9)

f ijuv ≥ 0, integer, ∀(u, v, i, j) ∈ A, (10)

The following pattern based formulation generalizes Gilmore and Gomory (1961) formulation to the
multiple-choice vector packing problem and it is equivalent to model (1)-(6). For bins of type t, let
column vectors akt = 〈aijkt〉(i,j)∈I represent all feasible packing patterns k; each element aijkt represents
the number of times incarnation j of item i is used in the pattern. Let xkt be a decision variable that
designates the number of times pattern k using bins of type t is used. The MVP can be modeled in

2

terms of these variables as follows:

minimize

q∑
t=1

∑
k∈Kt

Ctxkt (11)

subject to

q∑
t=1

∑
k∈Kt

∑
j∈Ji

aijktxkt ≥ bi, i = 1, . . . ,m, (12)

xkt ≥ 0, integer, t = 1, . . . , q, ∀k ∈ Kt, (13)

where every valid packing pattern k ∈ Kt for bins of type t satisfies:∑
(i,j)∈I

aijktw
d
ij ≤W d

t , d = 1, . . . , p, (14)

aijkt ≥ 0, integer, (i, j) ∈ I. (15)

Since there is flow conservation in every node in models (1)-(6) and (7)-(10), the arc-flow solutions are
circulations.

Corollary 1 (Flow decomposition for circulations) Any non-negative feasible circulation flow can
be decomposed into the sum of flows around directed cycles.

Corollary 1 follows directly from the Flow Decomposition Theorem (see, e.g., Ahuja et al. 1993).

Property 1 (Equivalence to the pattern-based model) For a graph with all valid packing patterns
represented as paths from s to tt for each bin type t, model (7)-(10) is equivalent to the pattern-based
model (11)-(13) with the same set of patterns.

Proof We apply Dantzig-Wolfe decomposition to model (7)-(10) keeping (7) and (9) in the master
problem, and (8) and (10) in the subproblem. As the subproblem is a totally unimodular flow model
whose solutions can be decomposed into cycles (each including one of feedback arcs associated with a
bin type), only valid packing patterns are generated, and we can substitute (8) and (10) by the patterns
and obtain a pattern-based model. From this equivalence follows that lower bounds provided by both
models are the same when the same set of patterns is considered, and the solution space is exactly the
same. �

Property 2 (Equivalence to the pattern-based model) For a graph with all valid packing patterns
represented as paths from s to tt for each bin type t, model (1)-(6) is equivalent, in terms of lower bound
at the root node, to the pattern-based model (11)-(13) with the same set of patterns.

Proof We apply Dantzig-Wolfe decomposition to model (1)-(6) keeping (1), (3) and (4) in the master
problem and (2), (5) and (6) in the subproblem. As the subproblem is a totally unimodular flow model
whose solutions can be decomposed into cycles (each including one of feedback arcs associated with a bin
type), only valid packing patterns are generated, and we can substitute (2), (5) and (6) by the patterns
and obtain a pattern-based model. From this equivalence follows that lower bounds provided by both
models are the same when the same set of patterns is considered. The equality constraints (4) and the
upper bound on variable values (5) have no effect on the lower bounds, since we are only excluding
solutions that satisfy the demand of some items with excess, and for these solutions there are equivalent
solutions that do not exceed the demand (recall that every valid packing pattern is represented in the
graph). �

3 Arc-flow models and graph compression

For cutting and packing problems, arc-flow models equivalent to pattern-based models can be easily
derived from the dynamic programming recursion of the underlying knapsack subproblem (see, e.g.,
Wolsey 1977). The main challenge is to find a compact representation of the patterns in a reasonable
amount of time. In Section 3.1, we show how the arc-flow models can be easily derived from dynamic
programming recursions, and in Section 3.2, we show how to obtain smaller arc-flow models using graph
compression.

3

3.1 Deriving arc-flow models from dynamic programming recursions

Definition 1 (Order) Items are sorted in decreasing order by the sum of normalized weights (αij =∑p
d=1 w

d
ij/max{W d

t : t = 1, . . . , q}), using decreasing lexicographical order in case of a tie.

The multiple-choice vector packing problem has an underlying knapsack subproblem on the capacity
constraints of each bin. Let I′ be the set of items sorted according Definition 1. Let πi be the profit
of item i. For the sake of simplicity, let wk = wij , bk = bi, πk = πi, and arcs (u, v, k) = (u, v, i, j), for
k = 1, . . . , |I′| and (i, j) = I′k. A dynamic programming recursion for the knapsack subproblem can be
defined as follows:

D(x, k, c) =

 min{Ct : t = 1, . . . , q, x ≤Wt} if k = |I′|+ 1,
min{D(x+ wk, k, c+ 1)− πk, D(x, k + 1, 0)} if c+ 1 ≤ bk and ∃t x+ wk ≤Wt,
D(x, k + 1, 0) otherwise.

Note that this dynamic programming recursion could be used to find the most attractive column in
a column generation algorithm based on model (11)-(13). At each iteration of the column-generation
process, a subproblem is solved and a column (pattern) is introduced in the restricted master problem if its
reduced cost is strictly less than zero. Let πk be the shadow price of the demand constraint associated with
item k. The reduced cost of the most attractive pattern is given by D(〈0〉d=1,...,p, 1, 0). In our method,
instead of using column-generation in an iterative process, we construct a graph containing every valid
packing pattern, and this graph can be derived from this dynamic programming recursion.

From this dynamic programming recursion D, we can easily derive an arc-flow model. Consider each
dynamic programming state as a node, and each recursive call as an arc. The graph can be obtained
as follows. Let G(x, k, c) = {((x, k, c),ts

t , 0) : t = 1, . . . , q} if k = |I′| + 1, G(x, k, c) = {((x, k, c), (x +
wk, k, c+1), k), ((x, k, c), (x, k+1, 0), 0)}∪G(x+wk, k, c+1)∪G(x, k+1, 0) if c+1 ≤ bk and ∃t x+wk ≤Wt,
and G(x, k, c) = G(x, k + 1, 0) otherwise. The source node s is (〈0〉d=1,...,p, 1, 0), the set of target nodes
is T = {ts

t : t = 1, . . . , q} (the base cases of the dynamic programming recursion), the set of arcs is
A = G(〈0〉d=1,...,p, 1, 0), and the set of vertices is V = {u : (u, v, k) ∈ A} ∪ {v : (u, v, k) ∈ A}.

The dynamic programming recursion D is equivalent to the following totally unimodular flow prob-
lem:

minimize

q∑
t=1

∑
(u,v,k)∈A:v=ts

t

Ctf
k
uv −

∑
(u,v,k)∈A:k 6=0

πkf
k
uv (16)

subject to
∑

(u,v,k)∈A:u=v′

fkuv −
∑

(u,v,k)∈A:v=v′

fkuv = 0, for v′ ∈ V \ ({s} ∪ T), (17)

∑
(u,v,k)∈A:u=s

fkuv = 1, (18)

fkuv ≥ 0, ∀(u, v, k) ∈ A. (19)

The dual of this flow problem, which corresponds exactly to the dynamic programming recursion defined
above, is the following:

maximize θ′s (20)

subject to θ′u ≤ Ct, for (u, v, k) ∈ A, k = 0,∃t v = ts
t , (21)

θ′u ≤ θ′v, for (u, v, k) ∈ A, k = 0, v /∈ T, (22)

θ′u ≤ θ′v − πk, for (u, v, k) ∈ A, k 6= 0. (23)

This relationship between dynamic programming recursions for knapsack problems and arc-flow models
is one of the results of Wolsey 1977, which leads to a natural method for obtaining arc-flow formulations
for cutting and packing problems.

4

3.2 Graph compression

In the graphs derived from the dynamic programming recursion D, each internal node is connected to
at most two other nodes: a node in its level (using the current item), and another in the level above
(not using the current item). This graph can be seen as the Step-2 graph of Brandão and Pedroso
(2016) as it already divides the graph into levels, one for each item incarnation, and therefore breaks
symmetry.

By adding the feedback loss arcs connecting each target node to the source (i.e., {(ts
t , s, 0) : t = 1, . . . , q}),

the arc-flow model derived directly from the dynamic programming recursion can be used with models
(1)-(6) or (7)-(10) to solve the corresponding multiple-choice vector packing problem. However, since
there is a constraint for each node and a variable for each arc, the model size may be a problem, and
therefore this can only be done for very small instances. Graph compressing is used in order to solve
this problem as it usually allows us to obtain reasonably small graphs even when the straightforward
approach would lead to models with many millions of variables and constraints.

Graph compression consists of relabelling the graph. In each compression step, a new graphG′ = (V ′, A′)
is constructed by creating a set of vertices V ′ = {φ(v) : v ∈ V } and a set of arcs A′ = {(φ(u), φ(v), k) :
(u, v, k) ∈ A, φ(u) 6= φ(v)}, where φ is the map between the original and new labels. This relabelling
procedure must assure that no valid packing pattern is removed, and that no invalid packing pattern is
added.

The main compression step is applied to the Step-2 graph (i.e., a graph with level dimension labels which
break symmetry). In the Step-3 graph, the longest paths to the target in each dimension are used to
relabel the internal nodes (V \ ({s}∪T)), dropping the level dimension labels (i.e., k and c) of each node.
Let 〈ϕd(u)〉d=1,...,p be the new label of node u in the Step-3 graph, where

ϕd(u) =

{
W d

t if u = ts
t (base case),

min(u′,v,k)∈A:u′=u{ϕd(v)− wd
k} otherwise.

(24)

In the paths from s to ts
t in the Step-2 graph usually there is slack in some dimension. In this process,

we are moving this slack as much as possible to the beginning of the paths.

Finally, in the final compression step, a new graph is constructed once more. In order to try to reduce
the graph size even more, we relabel the internal nodes once more using the longest paths from the source
in each dimension. Let 〈ψd(v)〉d=1,...,p be the label of node v in the Step-4 graph, where

ψd(v) =

{
0 if v = s (base case),
max(u,v′,k)∈A:v′=v{ψd(u) + wd

k} otherwise.
(25)

4 Graph construction and compression algorithm

Algorithm 1 is a generalization of the algorithm proposed in Brandão and Pedroso (2016). It builds
the Step-3 graph directly in order to avoid the construction of huge Step-1 and Step-2 graphs that may
have many millions of vertices and arcs. We start by sorting the items according the order defined in
Defenition 1 in line 3. Algorithm 1 uses dynamic programming to build the Step-3 graph recursively over
the structure of the Step-2 graph (without building it). The basic idea for this algorithm comes from
the fact that, in the main compression step, the label of any internal node (ϕ(u) = 〈min{ϕd(v) − wd

ij :
(u′, v, i, j) ∈ A, u′ = u}〉d=1,...,p) only depends on the labels of the two nodes to which it is connected;
a node in its level (line 18) and another in the level above (line 14). After directly building the Step-3
graph from the instance’s data using this algorithm, we apply the final compression step (line 29) using
Algorithm 2, and connect the internal nodes to the targets (line 30) using Algorithm 3. Since parallel
arcs associated to the same item type but different incarnations are redundant, all redundant arcs are
removed in line 31. In practice, this method allows obtaining arc-flow models even for large benchmark
instances quickly.

The dynamic programming states are identified by the space used in each dimension (〈xd〉d=1,...,p), the
current item (k) and the number of times it has already been used (c). In order to reduce the number

5

Algorithm 1: Graph construction and compression algorithm

input : I - set of items; w - item weights; b - demands; q - number of bin types; W - capacity vectors
output: V - set of vertices; A - set of arcs; s - source; ts - targets

1 function buildGraph(I, w, b, q,W):
2 dp[x, k, c]← NIL, for all x, k, c // dynamic programming table

3 I′ ← reverse(sorted(I, key = λ(i, j).(
∑p

d=1 w
d
ij/max{W d

t : t = 1, . . . , q}, wij))) // sort item incarnations

4 function lift(x, k, c): // auxiliary function: lift dp states solving knapsack/longest-path problems in each dimension

input : x - used capacity; k - current item; c - number of times the current has been used
5 function highestPosition(d, t):

6 return min

W d
t −

∑|I′|
j=k w

d
I′j
yj :

∑|I′|
j=k w

d
I′j
yj ≤W d

t − xd,
yk ≤ bk − c, yj ≤ bj , j = k + 1, ..., |I′|,
yj ≥ 0, integer, j = k, ..., |I′|


7 return 〈min{highestPosition(d, t) : t = 1, . . . , q, x ≤Wt}〉d=1,...,p

8 (V,A)← ({ }, { })
9 function ϕ(x, k, c):

input : x - used capacity; k - current item; c - number of times the current has been used
10 x← lift(x, k, c) // lift x in order to reduce the number of dp states

11 if dp[x, k, c] 6= NIL then // avoid repeating work

12 return dp[x, k, c]

13 u←
〈
min{W d

t : t = 1, . . . , q, x ≤Wt}
〉
d=1,...,p

// base case of ϕ(x, k, c) if there are no arcs leaving the node

14 if k < |I′| then // option 1: do not use the current item (go to the level above)

15 upx ← ϕ(x, k + 1, 0)

16 u← upx // value of ϕ(x, k, c) if no more items of the current type are introduced

17 (i, j)← I′k
18 if c < bi and x+ wij ≤Wt for any t = 1, . . . , q then // option 2: use the current item

19 v ← ϕ(x+ wij , k, c+ 1)

20 u←
〈
min(ud, vd − wd

ij)
〉
d=1,...,p

// update the value of ϕ(x, k, c)

21 A← A ∪ {(u, v, i, j)} // connect u to the node resulting from option 2

22 V ← V ∪ {u, v}
23 if k < |I′| and u 6= upx then
24 A← A ∪ {(u, upx, 0, 0)} // connect u to the node resulting from option 1

25 V ← V ∪ {upx}
26 dp[x, k, c]← u

27 return u // returns u = ϕ(x, k, c)

28 s← ϕ(x = 〈0〉d=1,...,p , k = 1, c = 0) // build the graph

29 (V,A, s)← finalCompression(V,A, s, w) // final compression step

30 (V,A, s,ts)← connectTargets(V,A, s, q,W) // connect the internal nodes to the targets

31 A← {(u, v, i, j) ∈ A : (u, v, i, j′) /∈ A,∀j′ < j} // remove parallel arcs associated to the same item type

32 return (G = (V,A), s,ts)

of states, we lift (line 10) each state by solving (using again dynamic programming though this is not
explicit in the algorithm) knapsack/longest-path problems in each dimension considering the remaining
items (line 5); we try to increase the space used in each dimension to its highest value considering the
valid packing patterns for the remaining items. Note that all valid bin sizes must be considered in the
lifting procedure.

If there is just one bin type, this algorithm works exactly as the original one. When there are multiple
bin types, the main difference are the lift procedure, which needs to take in consideration all valid bin
sizes, and the connection of internal nodes to the targets. When there are multiple valid targets for the
same node, we need to connect the node to each of them, or take advantage of a transitive reduction

6

to connect each node to as little targets as possible (as we do in Algorithm 3). For instance, in the
variable bin size problem, since there is just one dimension, the transitive reduction allows us to connect
each internal node to just one target (i.e., it uses only 1 additional arc per node instead of q additional
arcs).

Algorithm 2: Final compression step

input : V - set of vertices; A - set of arcs; s - source; w - item weights
output: V - set of vertices; A - set of arcs; s - source

1 function finalCompression(V,A, s, w):
2 ψ(s)← 〈0〉d=1,...,p

3 foreach v ∈ sorted(V \ {s}) do // for each vertex in reverse topological order of the transpose graph

4 ψ(v)←
〈
max{ψd(u) + wd

ij : (u, v′, i, j) ∈ A, v′ = v}
〉
d=1,...,p

5 s← ψ(s)

6 V ← {ψ(u) : u ∈ V } // new set of vertices

7 A← {(ψ(u), ψ(v), i, j) : (u, v, i, j) ∈ A, ψ(u) 6= ψ(v)} // relabel the graph and remove self-loops

8 return (G = (V,A), s)

Definition 2 A bin type t1 of capacity Wt1 dominates a bin type t2 of capacity Wt2 , (t1,Wt1) ≺ (t2,Wt2)
for short, if Wt1 = Wt2 and t1 < t2, or Wt1 6= Wt2 and Wt1 ≤ Wt2 .

Algorithm 3: Connect internal nodes to the targets

input : V - set of vertices; A - set of arcs; s - source; q - number of bin types; W - capacity vectors
output: V - set of vertices; A - set of arcs; s - source; ts - targets

1 function connectTargets(V,A, s, q,W):
2 ts ← 〈ts

t 〉t=1,...,q

3 foreach v ∈ V \ {s} do // for each internal node

4 τ ← {t : t = 1, . . . , q, v ≤Wt} // valid bin types for vertex v

5 foreach t ∈ {1, . . . , q} do
6 if t ∈ τ then
7 τ ← τ \ {t′ ∈ τ : (t,Wt) ≺ (t′,Wt′)} // transitive reduction (i.e., remove dominated bin types)

8 A← A ∪ {(v,ts
t , 0, 0) : t ∈ τ} // connect v to non-dominated targets

9 foreach t ∈ {1, . . . , q} do // for each bin type

10 τ ← {t′ = 1, . . . , q : (t,Wt) ≺ (t′,Wt′)} // dominated bin types

11 foreach t′ ∈ {1, . . . , q} do
12 if t′ ∈ τ then
13 τ ← τ \ {t′′ ∈ τ : (t′,Wt′) ≺ (t′′,Wt′′)} // transitive reduction

14 A← A ∪ {(ts
t ,t

s
t′ , 0, 0) : t′ ∈ τ} // connect ts

t the targets it directly dominates

15 V ← V ∪ {ts
t : t = 1, . . . , q}

16 A← A ∪ {(ts
t , s, 0, 0) : t = 1, . . . , q} // add the feedback arcs

17 return (G = (V,A), s,ts)

5 Conclusions

In this paper, we presented a graph construction and compression algorithm for multiple-choice vec-
tor bin packing problems. This algorithm was introduced in VPSolver 3.0.0 (https://github.com/
fdabrandao/vpsolver) as the standard graph construction method. When there is only one bin type
and each item has a single incarnation, the new algorithm produces exactly the same graph as the one
produced by the original algorithm. When multiple bin types exist, the algorithm produces on a single
run a graph containing all the valid packing patterns for all bin types.

7

https://github.com/fdabrandao/vpsolver
https://github.com/fdabrandao/vpsolver

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows - theory, algorithms and appli-
cations. Prentice-Hall.

Brandão, F. and Pedroso, J. P. (2013). Multiple-choice Vector Bin Packing: Arc-flow Formulation with
Graph Compression. Technical Report DCC-2013-13, Faculdade de Ciências da Universidade do Porto,
Portugal.

Brandão, F. and Pedroso, J. P. (2016). Bin packing and related problems: General arc-flow formulation
with graph compression. Computers & Operations Research, 69:56 – 67.

Gilmore, P. C. and Gomory, R. E. (1961). A Linear Programming Approach to the Cutting-Stock
Problem. Operations Research, 9:849–859.

Wolsey, L. A. (1977). Valid inequalities, covering problems and discrete dynamic programs. In P.L. Ham-
mer, E.L. Johnson, B. K. and Nemhauser, G., editors, Studies in Integer Programming, volume 1 of
Annals of Discrete Mathematics, pages 527 – 538. Elsevier.

8

	1 Introduction
	2 General arc-flow formulation for MVP
	3 Arc-flow models and graph compression
	3.1 Deriving arc-flow models from dynamic programming recursions
	3.2 Graph compression

	4 Graph construction and compression algorithm
	5 Conclusions

