Build (method = -2) #dp: 17572 Step-3' Graph: 318 vertices and 5255 arcs (0.08s) Step-4' Graph: 101 vertices and 4821 arcs (0.09s) #V4/#V3 = 0.32 #A4/#A3 = 0.92 Ready! (0.09s) Optimize a model with 287 rows, 4822 columns and 14268 nonzeros Presolve removed 17 rows and 61 columns Presolve time: 0.06s Presolved: 270 rows, 4761 columns, 10343 nonzeros Variable types: 0 continuous, 4761 integer (4311 binary) Found heuristic solution: objective 158.0000000 Optimize a model with 270 rows, 4761 columns and 10343 nonzeros Presolved: 270 rows, 4761 columns, 10343 nonzeros Root barrier log... Ordering time: 0.00s Barrier statistics: AA' NZ : 4.905e+03 Factor NZ : 1.318e+04 (roughly 2 MBytes of memory) Factor Ops : 7.730e+05 (less than 1 second per iteration) Threads : 1 Objective Residual Iter Primal Dual Primal Dual Compl Time 0 1.81005098e+03 -1.54146985e+03 1.83e+03 3.86e-02 2.20e+00 0s 1 3.67109350e+02 -5.65703815e+02 1.85e+02 8.88e-16 2.76e-01 0s 2 1.39744538e+02 -5.16971626e+01 1.72e+01 6.66e-16 3.43e-02 0s 3 1.02750662e+02 5.64933335e+01 1.23e+00 1.27e-04 5.59e-03 0s 4 1.00082478e+02 9.24571721e+01 5.94e-03 1.33e-15 8.02e-04 0s 5 1.00000193e+02 9.99981505e+01 4.74e-07 8.88e-16 2.15e-07 0s 6 1.00000000e+02 1.00000000e+02 5.83e-13 5.55e-16 2.26e-13 0s Barrier solved model in 6 iterations and 0.03 seconds Optimal objective 1.00000000e+02 Root relaxation: objective 1.000000e+02, 4440 iterations, 0.04 seconds Nodes | Current Node | Objective Bounds | Work Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time * 0 0 0 100.0000000 100.00000 0.0% - 0s Explored 0 nodes (4440 simplex iterations) in 0.14 seconds Thread count was 1 (of 8 available processors) Optimal solution found (tolerance 0.00e+00) Best objective 1.000000000000e+02, best bound 1.000000000000e+02, gap 0.0% Preprocessing time: 0.11 seconds Gurobi run time: 0.14 seconds Total run time: 0.24 seconds Objective: 100 Solution: 1 x [60, 186] 1 x [20, 181] 1 x [84, 161] 1 x [25, 151] 1 x [38, 142] 1 x [106, 120] 1 x [78, 111] 1 x [58, 71] 1 x [27, 159] 1 x [92, 139] 1 x [39, 122] 1 x [110, 118] 1 x [50, 118] 1 x [87, 93] 1 x [65, 130] 1 x [61, 174] 1 x [43, 184] 1 x [32, 175] 1 x [9, 109] 1 x [2, 178] 1 x [15, 167] 1 x [90, 150] 1 x [44, 147] 1 x [66, 127] 1 x [85, 117] 1 x [83, 146] 1 x [64, 182] 1 x [64, 179] 1 x [4, 114] 1 x [31, 171] 1 x [51, 157] 1 x [19, 144] 1 x [57, 86] 1 x [41, 158] 1 x [41, 76] 1 x [29, 173] 1 x [10, 166] 1 x [37, 160] 1 x [46, 156] 1 x [14, 134] 1 x [67, 134] 1 x [12, 102] 1 x [14, 96] 1 x [79, 89] 1 x [77, 104] 1 x [54, 68] 1 x [49, 71] 1 x [21, 73] 1 x [3, 153] 1 x [1, 94] 1 x [7, 177] 1 x [16, 149] 1 x [36, 141] 1 x [34, 145] 1 x [33, 105] 1 x [75, 108] 1 x [59, 70] 1 x [8, 124] 1 x [6, 165] 1 x [82, 176] 1 x [53, 113] 1 x [42, 183] 1 x [42, 138] 1 x [26, 170] 1 x [22, 155] 1 x [74, 180] 1 x [48, 133] 1 x [23, 176] 1 x [63, 163] 1 x [13, 148] 1 x [16, 145] 1 x [35, 132] 1 x [116, 125] 1 x [69, 95] 1 x [30, 52] 1 x [24, 45] 1 x [11, 98] 1 x [47, 140] 1 x [88, 154] 1 x [88, 137] 1 x [72, 115] 1 x [28, 143] 1 x [55, 129] 1 x [18, 103] 1 x [62, 172] 1 x [56, 123] 1 x [80, 100] 1 x [81, 169] 1 x [17, 185] 1 x [17, 135] 1 x [5, 164] 1 x [91, 162] 1 x [126, 136] 1 x [40, 168] 1 x [13, 121] 1 x [107, 112] 1 x [99, 128] 1 x [80, 152] 1 x [97, 119] 1 x [101, 131]